一般k8s的数据都会存放于远程存储服务器上来保证安全,采用的方式也有很多,如nfs,ceph等等多种,这里我们介绍nfs存储。nfs存储配置简单,但存是储量特别大,传输特别频繁的情况下难免会出现传输延迟,难以保证高并发时的数据完整性和高性能等问题,但是很多公司的基本要求还是可以满足的

kubernetes使用NFS共享存储有两种方式:

1.手动方式静态创建所需要的PV和PVC。
2.通过创建PVC动态地创建对应PV,无需手动创建PV。

搭建NFS远程服务器(ip:192.168.92.56)
找一台服务器搭建nfs服务端,我以centos7为例

安装nfs
yum -y install nfs-utils

#创建nfs目录
mkdir -p /nfs/data/

#修改权限
chmod -R 777 /nfs/data

#编辑export文件
vim /etc/exports
/nfs/data *(rw,no_root_squash,sync)  (“*“代表所有人都能连接,建议换成具体ip或ip段,如192.168.20.0/24)

#配置生效
exportfs -r
#查看生效
exportfs

#启动rpcbind、nfs服务
systemctl restart rpcbind && systemctl enable rpcbind
systemctl restart nfs && systemctl enable nfs

#查看 RPC 服务的注册状况
rpcinfo -p localhost

#showmount测试
showmount -e 192.168.92.56

#所有node节点安装客户端
yum -y install nfs-utils
systemctl start nfs && systemctl enable nfs

静态申请PV卷

添加pv卷对应目录,这里创建2个pv卷,则添加2个pv卷的目录作为挂载点。

#创建pv卷对应的目录
mkdir -p /nfs/data/pv001
mkdir -p /nfs/data/pv002

#配置exportrs
vim /etc/exports
/nfs/data *(rw,no_root_squash,sync)
/nfs/data/pv001 *(rw,no_root_squash,sync)
/nfs/data/pv002 *(rw,no_root_squash,sync)

#配置生效
exportfs -r
#重启rpcbind、nfs服务
systemctl restart rpcbind && systemctl restart nfs

创建PV
下面创建2个名为pv001和pv002的PV卷

配置文件 nfs-pv001.yaml 如下:
[centos@k8s-master ~]$ vim nfs-pv001.yaml 
apiVersion: v1
kind: PersistentVolume
metadata:
  name: nfs-pv001
  labels:
    pv: nfs-pv001
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Recycle
  storageClassName: nfs
  nfs:
    path: /nfs/data/pv001
    server: 192.168.92.56

nfs-pv002.yaml文件如下:
[centos@k8s-master ~]$ vim nfs-pv001.yaml 
apiVersion: v1
kind: PersistentVolume
metadata:
  name: nfs-pv002
  labels:
    pv: nfs-pv002
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Recycle
  storageClassName: nfs
    path: /nfs/data/pv002
    server: 192.168.92.56
配置说明:
① capacity 指定 PV 的容量为 1G。
② accessModes 指定访问模式为 ReadWriteOnce,支持的访问模式有:

    ReadWriteOnce – PV 能以 read-write 模式 mount 到单个节点。
    ReadOnlyMany – PV 能以 read-only 模式 mount 到多个节点。
    ReadWriteMany – PV 能以 read-write 模式 mount 到多个节点。

③ persistentVolumeReclaimPolicy 指定当 PV 的回收策略为 Recycle,支持的策略有:

    Retain – 需要管理员手工回收。
    Recycle – 清除 PV 中的数据,效果相当于执行 rm -rf /thevolume/*。
    Delete – 删除 Storage Provider 上的对应存储资源,例如 AWS EBS、GCE PD、Azure
    Disk、OpenStack Cinder Volume 等。

④ storageClassName 指定 PV 的 class 为 nfs。相当于为 PV 设置了一个分类,PVC 可以指定 class 申请相应 class 的 PV。
⑤ 指定 PV 在 NFS 服务器上对应的目录。

创建 pv:

[centos@k8s-master ~]$ kubectl apply -f nfs-pv001.yaml 
persistentvolume/nfs-pv001 created
[centos@k8s-master ~]$ kubectl apply -f nfs-pv002.yaml  
persistentvolume/nfs-pv002 created

[centos@k8s-master ~]$ kubectl get pv
NAME    CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS      CLAIM   STORAGECLASS   REASON   AGE
nfs-pv001   1Gi        RWO            Recycle          Available           nfs                     4s
nfs-pv002   1Gi        RWO            Recycle          Available           nfs                     2s
[centos@k8s-master ~]$ 

STATUS 为 Available,表示 pv就绪,可以被 PVC 申请。

创建PVC
接下来创建一个名为pvc001和pvc002的PVC

配置文件 nfs-pvc001.yaml 如下:
[centos@k8s-master ~]$ vim nfs-pvc001.yaml               
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: nfs-pvc001
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi
  storageClassName: nfs
  selector:
    matchLabels:
      pv: nfs-pv001

nfs-pvc002.yaml配置文件
[centos@k8s-master ~]$ vim nfs-pvc001.yaml               
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: nfs-pvc002
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi
  storageClassName: nfs
  selector:
    matchLabels:
      pv: nfs-pv002

执行yaml文件创建 pvc:

[centos@k8s-master ~]$ kubectl apply -f nfs-pvc001.yaml 
persistentvolumeclaim/nfs-pvc001 created
[centos@k8s-master ~]$ kubectl apply -f nfs-pvc002.yaml  
persistentvolumeclaim/nfs-pvc002 created

[centos@k8s-master ~]$ kubectl get pvc
NAME     STATUS   VOLUME   CAPACITY   ACCESS MODES   STORAGECLASS   AGE
nfs-pvc001   Bound    pv001    1Gi        RWO            nfs            6s
nfs-pvc002   Bound    pv002    1Gi        RWO            nfs            3s

[centos@k8s-master ~]$ kubectl get pv
NAME    CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM            STORAGECLASS   REASON   AGE
nfs-pv001   1Gi        RWO            Recycle          Bound    default/pvc001   nfs                     9m12s
nfs-pv002   1Gi        RWO            Recycle          Bound    default/pvc002   nfs                     9m10s
[centos@k8s-master ~]$ 

从 kubectl get pvc 和 kubectl get pv 的输出可以看到 pvc001 和pvc002分别绑定到pv001和pv002,申请成功。注意pvc绑定到对应pv通过labels标签方式实现,也可以不指定,将随机绑定到pv。

接下来就可以在 Pod 中使用存储了

Pod 配置文件 nfs-pod001.yaml 如下:
[centos@k8s-master ~]$ vim nfs-pod001.yaml 
kind: Pod
apiVersion: v1
metadata:
  name: nfs-pod001
spec:
  containers:
    - name: myfrontend
      image: nginx
      volumeMounts:
      - mountPath: "/var/www/html"
        name: nfs-pv001
  volumes:
    - name: nfs-pv001
      persistentVolumeClaim:
        claimName: nfs-pvc001

nfs-pod002.yaml 如下:
[centos@k8s-master ~]$ vim nfs-pod002.yaml 
kind: Pod
apiVersion: v1
metadata:
  name: nfs-pod002
spec:
  containers:
    - name: myfrontend
      image: nginx
      volumeMounts:
      - mountPath: "/var/www/html"
        name: nfs-pv002
  volumes:
    - name: nfs-pv002
      persistentVolumeClaim:
        claimName: nfs-pvc002

与使用普通 Volume 的格式类似,在 volumes 中通过 persistentVolumeClaim 指定使用nfs-pvc001和nfs-pvc002申请的 Volume。

执行yaml文件创建nfs-pdo001和nfs-pod002:

[centos@k8s-master ~]$ kubectl apply -f nfs-pod001.yaml 
pod/nfs-pod001 created
[centos@k8s-master ~]$ kubectl apply -f nfs-pod002.yaml  
pod/nfs-pod002 created

[centos@k8s-master ~]$ kubectl get pod
NAME                                      READY   STATUS    RESTARTS   AGE
nfs-client-provisioner-75bf876d88-sqqpv   1/1     Running   0          25m
nfs-pod001                                1/1     Running   0          12s
nfs-pod002                                1/1     Running   0          9s
[centos@k8s-master ~]$ 
验证 PV 是否可用:

[centos@k8s-master ~]$ kubectl exec nfs-pod001 touch /var/www/html/index001.html                  
[centos@k8s-master ~]$ kubectl exec nfs-pod002 touch /var/www/html/index002.html

[centos@k8s-master ~]$ ls /nfs/data/pv001/
index001.html
[centos@k8s-master ~]$ ls /nfs/data/pv002/
index002.html
[centos@k8s-master ~]$ 

进入pod查看挂载情况

[centos@k8s-master ~]$ kubectl exec -it nfs-pod001 /bin/bash
root@nfs-pod001:/# df -h
......
192.168.92.56:/nfs/data/pv001   47G  5.2G   42G  11% /var/www/html
......

删除pv
删除pod,pv和pvc不会被删除,nfs存储的数据不会被删除。

[centos@k8s-master ~]$ kubectl delete -f nfs-pod001.yaml 
pod "nfs-pod001" deleted

[centos@k8s-master ~]$ kubectl get pv
NAME    CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM            STORAGECLASS   REASON   AGE
nfs-pv001   1Gi        RWO            Recycle          Bound    default/pvc001   nfs                     34m
nfs-pv002   1Gi        RWO            Recycle          Bound    default/pvc002   nfs                     34m

[centos@k8s-master ~]$ kubectl get pvc
NAME     STATUS   VOLUME   CAPACITY   ACCESS MODES   STORAGECLASS   AGE
nfs-pvc001   Bound    pv001    1Gi        RWO            nfs            25m
nfs-pvc002   Bound    pv002    1Gi        RWO            nfs            25m

[centos@k8s-master ~]$ ls /nfs/data/pv001/
index001.html
[centos@k8s-master ~]$ 

继续删除pvc,pv将被释放,处于 Available 可用状态,并且nfs存储中的数据被删除。

[centos@k8s-master ~]$ kubectl delete -f nfs-pvc001.yaml 
persistentvolumeclaim "nfs-pvc001" deleted

[centos@k8s-master ~]$ kubectl get pv
NAME    CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS      CLAIM            STORAGECLASS   REASON   AGE
nfs-pv001   1Gi        RWO            Recycle          Available                    nfs                     35m
nfs-pv002   1Gi        RWO            Recycle          Bound       default/pvc002   nfs                     35m

[centos@k8s-master ~]$ ls /nfs/data/pv001/
[centos@k8s-master ~]$ 

继续删除pv

[centos@k8s-master ~]$ kubectl delete -f nfs-pv001.yaml 
persistentvolume "pv001" deleted

动态申请PV卷

项目地址:
https://github.com/kubernetes-incubator/external-storage/tree/master/nfs-client

External NFS驱动的工作原理
K8S的外部NFS驱动,可以按照其工作方式(是作为NFS server还是NFS client)分为两类:
1.nfs-client:
也就是我们接下来演示的这一类,它通过K8S的内置的NFS驱动挂载远端的NFS服务器到本地目录;然后将自身作为storage provider,关联storage class。当用户创建对应的PVC来申请PV时,该provider就将PVC的要求与自身的属性比较,一旦满足就在本地挂载好的NFS目录中创建PV所属的子目录,为Pod提供动态的存储服务。
2.nfs:
与nfs-client不同,该驱动并不使用k8s的NFS驱动来挂载远端的NFS到本地再分配,而是直接将本地文件映射到容器内部,然后在容器内使用ganesha.nfsd来对外提供NFS服务;在每次创建PV的时候,直接在本地的NFS根目录中创建对应文件夹,并export出该子目录。
利用NFS动态提供Kubernetes后端存储卷
本文将介绍使用nfs-client-provisioner这个应用,利用NFS Server给Kubernetes作为持久存储的后端,并且动态提供PV。前提条件是有已经安装好的NFS服务器,并且NFS服务器与Kubernetes的Slave节点都能网络连通。将nfs-client驱动做一个deployment部署到K8S集群中,然后对外提供存储服务。
nfs-client-provisioner 是一个Kubernetes的简易NFS的外部provisioner,本身不提供NFS,需要现有的NFS服务器提供存储

部署nfs-client-provisioner
首先克隆仓库获取yaml文件

git clone https://github.com/kubernetes-incubator/external-storage.git
cp -R external-storage/nfs-client/deploy/ $HOME
cd deploy

修改deployment.yaml文件
这里修改的参数包括NFS服务器所在的IP地址(192.168.92.56),以及NFS服务器共享的路径(/nfs/data),两处都需要修改为你实际的NFS服务器和共享目录。另外修改nfs-client-provisioner镜像从dockerhub拉取。

[centos@k8s-master deploy]$ vim deployment.yaml 
apiVersion: v1
kind: ServiceAccount
metadata:
**name: nfs-client-provisioner
---**
kind: Deployment
apiVersion: extensions/v1beta1
metadata:
  name: nfs-client-provisioner
spec:
  replicas: 1
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: nfs-client-provisioner
    spec:
      serviceAccountName: nfs-client-provisioner
      containers:
        - name: nfs-client-provisioner
          volumeMounts:
            - name: nfs-client-root
              mountPath: /persistentvolumes
          env:
            - name: PROVISIONER_NAME
              value: fuseim.pri/ifs
            - name: NFS_SERVER
              value: 192.168.92.56
            - name: NFS_PATH
              value: /nfs/data
      volumes:
        - name: nfs-client-root
          nfs:
            server: 192.168.92.56
            path: /nfs/data
部署deployment.yaml
kubectl apply -f deployment.yaml
查看创建的POD

[centos@k8s-master ~]$ kubectl get pod -o wide
NAME                                      READY   STATUS             RESTARTS   AGE   IP             NODE        NOMINATED NODE   READINESS GATES
nfs-client-provisioner-75bf876d88-578lg   1/1     Running            0          51m   10.244.2.131   k8s-node2   <none>           <none>

创建StorageClass
storage class的定义,需要注意的是:provisioner属性要等于驱动所传入的环境变量PROVISIONER_NAME的值。否则,驱动不知道知道如何绑定storage class。
此处可以不修改,或者修改provisioner的名字,需要与上面的deployment的PROVISIONER_NAME名字一致。

[centos@k8s-master deploy]$ vim class.yaml 
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: managed-nfs-storage
provisioner: fuseim.pri/ifs # or choose another name, must match deployment's env PROVISIONER_NAME'
parameters:
  archiveOnDelete: "false"
部署yaml文件

kubectl apply -f class.yaml

查看创建的storageclass

[centos@k8s-master deploy]$ kubectl get sc
NAME                  PROVISIONER      AGE
managed-nfs-storage   fuseim.pri/ifs   95m
[centos@k8s-master deploy]$ 

配置授权
如果集群启用了RBAC,则必须执行如下命令授权provisioner。

[centos@k8s-master deploy]$ vim rbac.yaml 
  - apiGroups: [""]
    resources: ["persistentvolumes"]
    verbs: ["get", "list", "watch", "create", "delete"]
  - apiGroups: [""]
    resources: ["persistentvolumeclaims"]
    verbs: ["get", "list", "watch", "update"]
  - apiGroups: ["storage.k8s.io"]
    resources: ["storageclasses"]
    verbs: ["get", "list", "watch"]
  - apiGroups: [""]
    resources: ["events"]
    verbs: ["create", "update", "patch"]
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: run-nfs-client-provisioner
subjects:
  - kind: ServiceAccount
    name: nfs-client-provisioner
    namespace: default
roleRef:
  kind: ClusterRole
  name: nfs-client-provisioner-runner
  apiGroup: rbac.authorization.k8s.io
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: leader-locking-nfs-client-provisioner
rules:
  - apiGroups: [""]
    resources: ["endpoints"]
    verbs: ["get", "list", "watch", "create", "update", "patch"]
---
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: leader-locking-nfs-client-provisioner
subjects:
  - kind: ServiceAccount
    name: nfs-client-provisioner
    # replace with namespace where provisioner is deployed
    namespace: default
roleRef:
  kind: Role
  name: leader-locking-nfs-client-provisioner
  apiGroup: rbac.authorization.k8s.io

部署yaml文件

kubectl create -f rbac.yaml

测试

创建测试PVC

kubectl create -f test-claim.yaml

这里指定了其对应的storage-class的名字为managed-nfs-storage,如下:

[centos@k8s-master deploy]$ vim test-claim.yaml 
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: test-claim
  annotations:
    volume.beta.kubernetes.io/storage-class: "managed-nfs-storage"
spec:
  accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 1Mi

查看创建的PVC
可以看到PVC状态为Bound,绑定的volume为pvc-a17d9fd5-237a-11e9-a2b5-000c291c25f3。

[centos@k8s-master deploy]$ kubectl get pvc
NAME         STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS          AGE
test-claim   Bound    pvc-a17d9fd5-237a-11e9-a2b5-000c291c25f3   1Mi        RWX            managed-nfs-storage   34m
[centos@k8s-master deploy]$

查看自动创建的PV

[centos@k8s-master deploy]$ kubectl get pv
NAME                                       CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM                STORAGECLASS          REASON   AGE
pvc-a17d9fd5-237a-11e9-a2b5-000c291c25f3   1Mi        RWX            Delete           Bound    default/test-claim   managed-nfs-storage            34m
[centos@k8s-master deploy]$ 

然后,我们进入到NFS的export目录,可以看到对应该volume name的目录已经创建出来了。
其中volume的名字是namespace,PVC name以及uuid的组合:

[root@k8s-master ~]# cd /nfs/data/
[root@k8s-master data]# ll
total 0
drwxrwxrwx 2 root root 21 Jan 29 12:03 default-test-claim-pvc-a17d9fd5-237a-11e9-a2b5-000c291c25f3

创建测试Pod
指定该pod使用我们刚刚创建的PVC:test-claim,另外注意这里将镜像改为dockerhub镜像。
完成之后,如果attach到pod中执行一些文件的读写操作,就可以确定pod的/mnt已经使用了NFS的存储服务了。

[centos@k8s-master deploy]$ vim test-pod.yaml 
kind: Pod
apiVersion: v1
metadata:
  name: test-pod
spec:
  containers:
  - name: test-pod
    image: willdockerhub/busybox:1.24
    command:
      - "/bin/sh"
    args:
      - "-c"
      - "touch /mnt/SUCCESS && exit 0 || exit 1"
    volumeMounts:
      - name: nfs-pvc
        mountPath: "/mnt"
  restartPolicy: "Never"
  volumes:
    - name: nfs-pvc
      persistentVolumeClaim:
        claimName: test-claim


执行yaml文件

kubectl create -f test-pod.yaml

查看创建的测试POD

[centos@k8s-master ~]$ kubectl get pod -o wide
NAME                                      READY   STATUS             RESTARTS   AGE   IP             NODE        NOMINATED NODE   READINESS GATES
nfs-client-provisioner-75bf876d88-578lg   1/1     Running            0          51m   10.244.2.131   k8s-node2   <none>           <none>
test-pod                                  0/1     Completed          0          41m   10.244.1.129   k8s-node1   <none>           <none>

在NFS服务器上的共享目录下的卷子目录中检查创建的NFS PV卷下是否有"SUCCESS" 文件。

[root@k8s-master ~]# cd /nfs/data/
[root@k8s-master data]# ll
total 0
drwxrwxrwx 2 root root 21 Jan 29 12:03 default-test-claim-pvc-a17d9fd5-237a-11e9-a2b5-000c291c25f3
[root@k8s-master data]# 

[root@k8s-master data]# cd default-test-claim-pvc-a17d9fd5-237a-11e9-a2b5-000c291c25f3/
[root@k8s-master default-test-claim-pvc-a17d9fd5-237a-11e9-a2b5-000c291c25f3]# ll
total 0
-rw-r--r-- 1 root root 0 Jan 29 12:03 SUCCESS

清理测试环境
删除测试POD

kubectl delete -f test-pod.yaml

删除测试PVC

kubectl delete -f test-claim.yaml

在NFS服务器上的共享目录下查看NFS的PV卷已经被删除。
官方wordpress示例

官方链接:
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
创建secret
创建secret以存储mysql数据库密码,这里数据库登录密码设为123456

kubectl create secret generic mysql-pass --from-literal=password=123456

查看创建的secret

[centos@k8s-master ~]$ kubectl get secrets
NAME                  TYPE                                  DATA   AGE
mysql-pass            Opaque                                1      68m
[centos@k8s-master ~]$ 

部署MYSQL
MYSQL容器挂载持久卷到容器/var/lib/mysql目录下,其中MYSQL_ROOT_PASSWORD环境变量通过Secret方式设置数据库密码。
注意这里在官方示例基础上做了3处修改:
1.PersistentVolumeClaim中增加了如下内容
annotations:
volume.beta.kubernetes.io/storage-class: “managed-nfs-storage”
2.存储改为1Gi仅用来测试
3.msyql镜像改为mysql:latest

[centos@k8s-master ~]$ vim wordpress-mysql.yaml 
apiVersion: v1
kind: Service
metadata:
  name: wordpress-mysql
  labels:
    app: wordpress
spec:
  ports:
    - port: 3306
  selector:
    app: wordpress
    tier: mysql
  clusterIP: None
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mysql-pv-claim
  annotations:
    volume.beta.kubernetes.io/storage-class: "managed-nfs-storage"
  labels:
    app: wordpress
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi
---
apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2
kind: Deployment
metadata:
  name: wordpress-mysql
  labels:
    app: wordpress
spec:
  selector:
    matchLabels:
      app: wordpress
      tier: mysql
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: wordpress
        tier: mysql
    spec:
      containers:
      - image: mysql:latest
        name: mysql
        env:
        - name: MYSQL_ROOT_PASSWORD
          valueFrom:
            secretKeyRef:
              name: mysql-pass
              key: password
        ports:
        - containerPort: 3306
          name: mysql
        volumeMounts:
        - name: mysql-persistent-storage
          mountPath: /var/lib/mysql
      volumes:
      - name: mysql-persistent-storage
        persistentVolumeClaim:
          claimName: mysql-pv-claim

部署wordpress
注意这里同样在官方示例基础上做了4处修改:
1.Service项的类型改为NodePort
type: NodePort
2.PersistentVolumeClaim中增加了如下内容
annotations:
volume.beta.kubernetes.io/storage-class: “managed-nfs-storage”
3.存储改为1Gi仅用来测试
4.wordpress镜像改为wordpress:latest

[centos@k8s-master ~]$ vim wordpress.yaml 
apiVersion: v1
kind: Service
metadata:
  name: wordpress
  labels:
    app: wordpress
spec:
  ports:
    - port: 80
  selector:
    app: wordpress
    tier: frontend
  type: NodePort
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: wp-pv-claim
  annotations:
    volume.beta.kubernetes.io/storage-class: "managed-nfs-storage"
  labels:
    app: wordpress
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi
---
apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2
kind: Deployment
metadata:
  name: wordpress
  labels:
    app: wordpress
spec:
  selector:
    matchLabels:
      app: wordpress
      tier: frontend
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: wordpress
        tier: frontend
    spec:
      containers:
      - image: wordpress:latest
        name: wordpress
        env:
        - name: WORDPRESS_DB_HOST
          value: wordpress-mysql
        - name: WORDPRESS_DB_PASSWORD
          valueFrom:
            secretKeyRef:
              name: mysql-pass
              key: password
        ports:
        - containerPort: 80
          name: wordpress
        - name: wordpress-persistent-storage
          mountPath: /var/www/html
      volumes:
      - name: wordpress-persistent-storage
        persistentVolumeClaim:
          claimName: wp-pv-claim

修改mysql连接认证方式
mysql8.0以上版本默认认证方式已经改为caching_sha2_password,wordpres等客户端还不支持,这里改回原来的mysql_native_password认证方式。(你也可以使用mysql:5.7.25等版本镜像避免此问题)。

#获取mysql容器所在pod名称
$ kubectl get pod

#进入mysql的pod
$ kubectl exec -it wordpress-mysql-5fd57746c7-8dhrq /bin/bash

#登录数据库(此处的密码为参数MYSQL_ROOT_PASSWORD对应的值,此处密码为123456)
mysql -u root -p

#使用mysql数据库
use mysql;

#查询mysql的root用户
mysql> select host, user, plugin from user;
+-----------+------------------+-----------------------+
| host      | user             | plugin                |
+-----------+------------------+-----------------------+
| %         | root             | caching_sha2_password |
| localhost | mysql.infoschema | caching_sha2_password |
| localhost | mysql.session    | caching_sha2_password |
| localhost | mysql.sys        | caching_sha2_password |
| localhost | root             | caching_sha2_password |
+-----------+------------------+-----------------------+
5 rows in set (0.00 sec)

#修改加密规则 
ALTER USER 'root'@'%' IDENTIFIED BY 'password' PASSWORD EXPIRE NEVER;

#修改root用户插件验证方式,注意这里的密码,改为个人登录的密码
ALTER USER 'root'@'%' IDENTIFIED WITH mysql_native_password BY '123456';

#刷新权限 
FLUSH PRIVILEGES;
查看创建的POD

[centos@k8s-master ~]$ kubectl get pod
NAME                                      READY   STATUS    RESTARTS   AGE
nfs-client-provisioner-75bf876d88-578lg   1/1     Running   2          9h
wordpress-8556476bc5-v79q2                1/1     Running   12         156m
wordpress-mysql-5fd57746c7-8dhrq          1/1     Running   0          13m

  
查看创建的PV和PVC

[centos@k8s-master ~]$ kubectl get pvc
NAME             STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS          AGE
mysql-pv-claim   Bound    pvc-a528b88f-23c7-11e9-9d07-000c291c25f3   1Gi        RWO            managed-nfs-storage   12m
wp-pv-claim      Bound    pvc-8f93dd7e-23b3-11e9-a2b5-000c291c25f3   1Gi        RWO            managed-nfs-storage   155m

[centos@k8s-master ~]$ kubectl get pv
NAME                                       CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM                    STORAGECLASS          REASON   AGE
pvc-8f93dd7e-23b3-11e9-a2b5-000c291c25f3   1Gi        RWO            Delete           Bound    default/wp-pv-claim      managed-nfs-storage            155m
pvc-a528b88f-23c7-11e9-9d07-000c291c25f3   1Gi        RWO            Delete           Bound    default/mysql-pv-claim   managed-nfs-storage            12m
[centos@k8s-master ~]$ 


查看wordpress service

[centos@k8s-master ~]$ kubectl get svc wordpress
NAME        TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE
wordpress   NodePort   10.106.151.14   <none>        80:30533/TCP   157m
[centos@k8s-master ~]$ 


服务端口为30533,通过nodeport方式访问wordpress.

访问wordpress
http://192.168.92.56:30533
在这里插入图片描述
NFS端查看已创建的卷

卷目录下已写入持久化的mysql和wordpress配置数据,删除pod重新创建不会导致数据丢失。

[centos@k8s-master ~]$ cd /nfs/data/
[centos@k8s-master data]$ ll
total 8
drwxrwxrwx 7 polkitd ssh_keys 4096 Jan 29 21:16 default-mysql-pv-claim-pvc-a528b88f-23c7-11e9-9d07-000c291c25f3
drwxrwxrwx 5 root    root     4096 Jan 29 21:16 default-wp-pv-claim-pvc-8f93dd7e-23b3-11e9-a2b5-000c291c25f3
[centos@k8s-master data]$

[centos@k8s-master data]$ cd default-mysql-pv-claim-pvc-a528b88f-23c7-11e9-9d07-000c291c25f3/
[centos@k8s-master default-mysql-pv-claim-pvc-a528b88f-23c7-11e9-9d07-000c291c25f3]$ ll
total 181172
-rw-r----- 1 polkitd ssh_keys       56 Jan 29 21:13 auto.cnf
-rw-r----- 1 polkitd ssh_keys  3090087 Jan 29 21:13 binlog.000001
-rw-r----- 1 polkitd ssh_keys   964626 Jan 29 21:28 binlog.000002
-rw-r----- 1 polkitd ssh_keys       32 Jan 29 21:13 binlog.index
-rw------- 1 polkitd ssh_keys     1676 Jan 29 21:13 ca-key.pem
-rw-r--r-- 1 polkitd ssh_keys     1112 Jan 29 21:13 ca.pem
-rw-r--r-- 1 polkitd ssh_keys     1112 Jan 29 21:13 client-cert.pem
-rw------- 1 polkitd ssh_keys     1676 Jan 29 21:13 client-key.pem
-rw-r----- 1 polkitd ssh_keys     5933 Jan 29 21:13 ib_buffer_pool
-rw-r----- 1 polkitd ssh_keys 12582912 Jan 29 21:28 ibdata1
-rw-r----- 1 polkitd ssh_keys 50331648 Jan 29 21:28 ib_logfile0
-rw-r----- 1 polkitd ssh_keys 50331648 Jan 29 21:13 ib_logfile1
-rw-r----- 1 polkitd ssh_keys 12582912 Jan 29 21:14 ibtmp1
drwxr-x--- 2 polkitd ssh_keys      187 Jan 29 21:13 #innodb_temp
drwxr-x--- 2 polkitd ssh_keys      143 Jan 29 21:13 mysql
-rw-r----- 1 polkitd ssh_keys 31457280 Jan 29 21:20 mysql.ibd
drwxr-x--- 2 polkitd ssh_keys     4096 Jan 29 21:13 performance_schema
-rw------- 1 polkitd ssh_keys     1676 Jan 29 21:13 private_key.pem
-rw-r--r-- 1 polkitd ssh_keys      452 Jan 29 21:13 public_key.pem
-rw-r--r-- 1 polkitd ssh_keys     1112 Jan 29 21:13 server-cert.pem
-rw------- 1 polkitd ssh_keys     1676 Jan 29 21:13 server-key.pem
drwxr-x--- 2 polkitd ssh_keys       28 Jan 29 21:13 sys
-rw-r----- 1 polkitd ssh_keys 12582912 Jan 29 21:28 undo_001
-rw-r----- 1 polkitd ssh_keys 11534336 Jan 29 21:28 undo_002
drwxr-x--- 2 polkitd ssh_keys      287 Jan 29 21:19 wordpress

执行pod删除操作,数据和配置不会丢失

[centos@k8s-master ~]$ kubectl delete pod wordpress-mysql-5fd57746c7-87f2m

Pv无法删除问题

PV处于Terminating并且无法删除:

[centos@k8s-master ~]$ kubectl get pv
NAME      CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS        CLAIM                                STORAGECLASS   REASON   AGE
nfs-pv3   200M       RWX            Recycle          Terminating   kube-system/redis-data-redis-app-5                           7h54m
nfs-pv4   200M       RWX            Recycle          Terminating   kube-system/redis-data-redis-app-2                           7h54m
[centos@k8s-master ~]$ kubectl delete pv nfs-pv3
persistentvolume "nfs-pv3" deleted


删除 kubernetes.io/pv-protection项 可强制删除处于Terminating状态的PV,更改后:wq保存即可。

[centos@k8s-master ~]$ kubectl edit pv nfs-pv3
......
  finalizers:
  - kubernetes.io/pv-protection   #删除此行即可自动删除处于Terminating状态的PV

这样nfs的远程存储就算达到基本使用的地步了,现在我们还要考虑一个问题,假如nfs服务端挂了怎么办,如何保证nfs的高可用,有兴趣的可以看我其他的nfs高可用的文章。

Logo

开源、云原生的融合云平台

更多推荐